) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Parallel Programming Models
and Dependencies

Concurrency and Parallelism — 2016-17
Master in Computer Science
(Mestrado Intfegrado em Eng. Informatica)

Joao Lourencgo <joao.lourenco@fct.unl.pt>

Source: Parallel Computing, CIS 410/510, Department of Computer and Information Science

Outline

» Parallel programming models

» Dependencies

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

Parallel Models

« Sequential models Memory
—von Neumann (RAM) model (RAM)

 Parallel model

— A parallel computer is simple a collection
of processors inferconnected in some manner to
coordinate activities and exchange data

— Models that can be used as general frameworks for
describing and analyzing parallel algorithms
« Simplicity: description, analysis, architecture independency
« Implementabillity: able to be realized, reflect performance

processor

& »
[« >

* Three common parallel models
— Directed acyclic graphs, shared-memory, network

Directed Acyclic Graphs (DAG)

» Captures data flow parallelism

* Nodes represent operations to be performed
— Inputs are nodes with no incoming arcs
— Output are nodes with no outgoing arcs
— Think of nodes as tasks

« Arcs are paths for flow of data results

* DAG represents the operations of the algorithm
and implies precedent constraints on their order

for (i=1; 1<100; i++) G Caid> - Cals®)
: ; A\ AN 2

a[i] = a[i-1] + 100;

Input | | Standard Output
node node node

Shared Memory Model

» Parallel extension of RAM model (PRAM)

— Memory size is infinite 3
— Number of processors in unbounded P,
— Processors communicate via the memory Ps

— Every processor accesses any memaory
location in the same number of cycles

— Synchronous Py
« All processors execute same algorithm synchronously
— READ phase
— COMPUTE phase
— WRITE phase

« Some subset of the processors can stay idle
— Asynchronous

Shared
Memory

Network Model

— P P P
[] G j— (N'E) I11 I12 I1l\
— N are processing nodes | | |
— E are bidirectional communication links

« Each processor has its own memory

* No shared memory is available
 Network operation may be synchronous or asynchronous

« Requires communication primitives
— Send (X, i)
— Receive (Y, j)

« Captures message passing model for algorithm design

Parallelism

« Ability o execute different parts of a computation
concurrently on different computing elements

« Why do you want parallelisme
— Shorter running time or handling more work

 What is being parallelized?
— Task: instruction, statement, procedure, ...
— Data: data flow, size, replication
— Parallelism granularity
« Coarse-grain versus fine-grained

« Evaluation
— Was the parallelization successfule

Why Is parallel programming
Importante

» Parallel programming has matured

— Standard programming models
— Common machine architectures

— Programmer can focus on computation and use suitable
programming model for implementation

* Increase portability between models and
architectures

« Reasonable hope of portability across platforms

* Problem
— Performance optimization is still platform-dependent
— Performance portability is a problem
— Parallel programming methods are still evolving

Parallel Algorithm

« Recipe to solve a problem “in parallel” on
multiple processing elements

« Standard steps for constructing a parallel
algorithm
— |[denftify work that can be performed concurrently
— Partition the concurrent work on separate processors
— Properly manage input, output, and infermediate data

— Coordinate data accesses and work to satisfy
dependencies

* Which steps are hard to do?¢

Parallelism Views

 Where can we find parallelisme

* Program (task) view
— Statement level
« Between program statements
« Which statements can be executed at the same time?
— Block level / Loop level / Routine level / Process level
« Larger-grained program statements

 Data view

— How is data operated on¢
— Where does data reside?

 Resource view
— When to access and use a shared resourcee

Parallelism, Correctness, and
Dependencies

» Parallel execution shall always be constrained by
the sequence of operations needed to be
performed for a correct result

- Parallel execution must address control, dafa, and
system dependencies

« A dependency arises when one operation depends
on an earlier operation to complete and produce a
result before this later operation can be performed

 We extend this notion of dependency to resources
since some operations may depend on certain
resources
— For example, due to where data is located

Executing Two Statements in
Parallel

 Want fo execute two statements in parallel
« ON one processor:

Processor 1:
Statement 1;

Statement 2;

* On two processors:
Processor 1: Processor 2:
Statement 1; Statement 2;

« Fundamental (concurrent) execution assumption
— Processors execute independent of each other
— No assumptions made about speed of processor execution

Seqgquential Consistency in
Parallel Execution

e Case 1: |
D time
Processor 1: Processor 2:
statement 1;
)\ statement 2; v
« Case 2: -
Processor 1: Processor 2:
statement 2;
statement 1;

» Sequential consistency
— Statements execution does not interfere with each other
— Computation results are the same (independent of order)

Independent versus Dependent

* In other words the execution of

statementl;
statement2;

must be equivalent to

statement2;
statementl;

* Their order of execution must not matter!

o If frue, the statements are independent of each
other

« Two statements are dependent when the order of
their execution affects the computation outcome

Examples

 Example 1
Sl:a=1;
$2: b=1;

« Example 2
Sl: a=1;
S2: b=q;

« Example 3
S1: a=f(x);
S2: a=b;

« Example 4
S1: a=b;
S2: b=1;

Sep 30, 2016

0 Statements are independent

0 Dependent (frue (flow) dependency)
o Second is dependent on first
o Can youremove dependencye

0 Dependent (outpuf dependency)
o Second is dependent on first
o Can youremove dependencye How?e

0 Dependent (anfi-dependency)
o First is dependent on second
o Can youremove dependencye How2

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

True Dependency
and Antl-Dependency

 Glven statements S1 and S2,
S1;
S2;

+ $2 has a frue (flow) dependency onS1 *=] 5
X

if and only if $2 reads a value written by S1 = X
(RAW — Read After Write)

* $2 has a antfi-dependency on S| =X] .
.

if and only if S2 writes a value read by S1
(WAR — Write After Read)

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 16

Output Dependency

« Glven statements S1 and S2,
S1;
S2;

« S?2 has an outpuf dependency on ST . ;] 59
X =

If and only if $2 writes a variable written by S1
(WAW — Write After Write)

« Anti- and output dependencies are “name”
dependencies
— Are they “frue” dependencies?

 How can you get rid of output dependencies?

Statement Dependency
Graphs

« Can use graphs to show dependency relationships

« Example (51D
S1: a=1; flow
S2: b=qa: output ce‘ anti
$3: a=b+1; (s3)
S4: c=q; @
S, 8 S, :S,is flow-dependent on S,

« S, &Y S5 :S5is output-dependent on S,
« S, 65, :S5is anti-dependent on S,

When can two statements
execute in parallele

» Statements S1 and S2 can execute in parallel if
and only If there are no dependencies between
them, I.e., no

— True dependencies; nor

— Anti-dependencies; nor
— Qufput dependencies.

« Some dependencies can be removed by
modifying the program
— Rearranging statements
— Eliminating statements

How do you compute
dependenciese

« Data dependency relations can be found by
comparing the IN and OUT sets of each node

 The IN and OUT sets of a statement S are defined

as:
—IN(S) : set of memory locations (variables) that may be

usedin S
— OUT(S) : set of memory locations (variables) that may be

modified by S

* Note that these sefts include all memory
locations that may be fetched or modified

* As such, the setfs can be conservatively large

IN / OUT Sets and Computing
Dependencies

« Assuming that there is a path from S1 to S22, the
following shows how to intersect the IN and OUT
sefs to test for data dependency

out(S)Nin(S,)= 5,6 S, flow dependence
in(S)Nout(S,)=B 5,67 S, anti-dependence
out(S)Nout(S,) =< §,6°S, output dependence

Example

S1:
S2:
S3:
S4:

Sep 30, 2016

Co

ncurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

22

Loop-Level Parallelism

« Significant parallelism can be identified within loops

parallel for (i=0; i<100; i++)

for (1 0; 1<1@@, 1++) {
:afi] = S1: a[i]
S2: b[i]

i;

2*al[i]; E’

¥

 Dependencies?¢ What about i, the loop indexe
« DOALL loop (a.k.a. foreach loop)

— All iterations are independent of each other
— All statements will be executed in parallel at the same time

* |s this really truee

Loop-Level Parallelism

« Significant parallelism can be identified within
loops

parallel for (i=0; i<100; i++)
for (i=0; i<100; i++) | 1 :
S1: a[i] = i; S1: af[i]
.) S2: b[i]
}

i;

2%1; '?

» Dependenciese What about i, the loop index?

General Approach for Loop
Parallelism

-
Find the hotspots
Y,
. . \
Eliminate loop-carried
dependencies
Y
<
Parallelize the loops
Y,
. . \
Optimize the loop
schedule

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 25

FiInd tThe hotspofts

* By code inspection

analysis tools

* By using performance

= console I V=) Tasks | {2 Problems | () Executables I %9 eCos Events (DSF) | &Cos Threads (DSF) I Ty gprof

gmon file: fhomelchristopheivorkspacelgprofigmon.out
program file: homelchristophefvorkspacelgprofimain elf
8 bytes per bucket, each sample counts as 3.508ms

lent = new bl. dESkt

lient.Insert(); SN Mame (location)

onC

it ¥ Summary
¥ hal_delay_us
v parents

hal_variant_idle_thread_action {var_misc.c:97)

ationClient.LastRequest = eTis
icatlonCllent.RequestCount = Notifi
ficationClient.Update();

¥ hal_if_diag_write_char

= children
/ cyg_hal_plf_serial_putc (quice3_diag.c:223)
cyg_scheduler_lock (kapi.cxx:115)

.Deny == false) cyg_scheduler_unlock {kapi.cxx:136)

N, N - v parents

%‘“est Notificationf?) . '
SE.ClientId = y diag_write_char {diag.cxx:103)
hal_mcount
hal_interrupt_stack_call_pending_DSRs
cyg_fp_get

hal_idle_thread_action

Samples
9805
8649
1

1142

s o O O O o o O

Calls

302577
302577
302577
15951
47853
15851
15851
15851
15951
15951

131

Time/Call

100.296us
11ns

11ns
251.207us
Ons

Ons

Ons

Ons

Ons

Ons

26.784us

% Time

s

001%
0.01%
(o a—
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.06%
0.04%
0.01%
001%

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

26

Eliminate loop-carried
dependencies

« Statements dependencies include: frue
dependencies, anti-dependencies and output

dependencies.

» Loop dependencies also include those, carried
from one execution of the loop to another.

Loop Dependencies

* A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

>;
a,

True dependency — the memory
location ‘@’ is written (in S1) before it is
read (in S2)

S1 0 S2

for (i=0; i<n; i++) {
S1: a[i] = a[i-1];
}

True dependency — a memory location
‘a[j]’ is written before it is read in the
next iteration of the loop

S1[j] o S1i[j+1]

Loop Dependencies

* A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

S1: b
S2: a

a,
5;

Anti-dependency — the memory
location ‘@’ is read (in S1) before it is
written (in S2)

S1 91 S2

for (i=0; i<n; i++) {
S1: a[i] = a[i+1];
}

Anti-dependency — a memory location
‘alj]’ is read before it is written in the
next iteration of the loop

S1[j] o S1[j+1]

Loop Dependencies

* A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

S1: c
S2: C

85
15;

Output dependency — the same

memory location ‘c’ is written (in S1)

and then written once again (in S2)
S1 9° S2

for (i=0; i<n; i++) {
S1: c[i] = 1i;
S2: c[i+l1l] = 5;

}

Output dependency — the same
memory location ‘afj]’ is written (in S2)
and then written again in the next
iteration of the loop (in S1)

S2[j] 0° S1[j+1]

Loop Dependencies

* A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

« Otherwise, it is loop-independent

» Loop-carried dependencies can prevent loop
iteration parallelization

» The dependency is lexically forward if the source
comes before the target or lexically backward
otherwise

— Unroll the loop to see

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 31

Loop dependencies: examples

* The following loop cannot be parallelized

(without rewriting)
4 I
al@] = 1;
for (i=1; i<N; i++) {
a[i] = a[i] + a[i-1];
) "— _
o)
: a[l]—=_a1] + a[@]; Each iteration depends on
['\a-:m’a:]5 the result of the preceding

a[3T +a[2]; iteration

il
W N R
)
N
=

—
—
[—
—
—

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 32

Detecting dependencies

* Analyze how each variable is used within a loop
iferation:

e |s the variable read and never written?
=> no dependencies!

» For each written variable: can there be any
accesses in other iterations than the currente
=> there are dependencies!

Simple rule of thumb

* A loop that matches the following criteria has no
dependencies and can be parallelized:

1. All assignments to shared data are to arrays:

2. Each element is assigned by at most one
iferation; and

3. No iteration reads elements assigned by any
other iteration.

Example |

* |s this loop parallelizable?

C 0
for (i=1; i<N; i+=2) {

a[i] = a[i] + a[i-1];
¥
- /
i=1: a[l] = a[1l] + a[@]; No dependencies!
i=3: a[3] = a[3] + a[2]; YES!! It is parallelizable!
i=5: a[5] = a[5] + a[4];

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

35

Example 2

* |s this loop parallelizable?

C O
for (i=0; i<N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

- /
i=0: a[@] = a[@] + a[©+N/2]; No dependencies!

i=1: a[l1l] = a[1] + a[1+N/2]; YES!! Itis parallelizable!

i;ﬁ/2-1: a[N/2-1] = a[N/2-1] + a[N-1];

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 36

Example 3

* |s this loop parallelizable?

a 0
for (i=0; iksN/2; i++) {
a[i] = a[i] + a[i+N/2];

¥

- /
i=0: a[1] = a[1] + a[[0+N/2]]; Loop carried lexically

i=1: a[2] = a[2] 1+N/2]; forward dependency

e (true dependency)
i=N/2: a[N/2]] = a[N/2] + a[N];Itis NOT parallelizable!

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 37

Example 4

* |s this loop parallelizable?
C O
for (i=0; i<N; i++) {

alidx[i]] = a[idx[i]] + b[idx[i]];

}

- /
i=0: a[?,] = a[?,] + b[?,]; Don’t know which index is
i=1: a[?,] = a[?,] + b[?,]; accessed in each iteration
i=3: a[?;] = a[?3] + b[?5]; of the loop.

It is NOT parallelizable!

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 38

Removing dependencies |

 How to remove this dependency?¢

for (i=0; ik=N/2; i++) {
a[i] = a[i] + a[i+N/2];
} Take the
dependent

for (i=0; i<N/2; i++) { iteration out
a[i] = a[i] + a[i+N/2]; of the loop

}
a[N/2] = a[N/2] + a[N];

Removing dependencies 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

 How to remove this dependency? | :

for (i=0; i<N; i++) { True dependency inside the loop (X)

Output dependency between iterations (x)

Anti-dependency between iterations (x)

Anti-dependency between iterations (ali])

 Toremove the dependencies on ‘X’ privatize it

Removing dependencies 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;

a[i] = a[i+1] + x;

 How to remove this dependency? | :

for (i=0; i<N; i++) {
dnt xJ= (b[i] + c[i]) / 2;
a[i] = a[i+1l] + Xx;

} Anti-dependency between iterations (ali])

 Toremove the dependency on ‘ali]’
make copy of ‘a’

Removing dependencies 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

 How to remove this dependency? | :

for (i=0; i<N; i++) {
a2[i] = a[i+1];

}

for (1=@} i< N; i++) { Anti-dependency between iterations (ali])
int x = (b[i] + c[i]) / 2;
al[i] =(a2[i]) + x;

}

« Both ‘for’ are parallelizable!! Should we do ite

Removing dependencies 3

 How to remove this dependency?¢

for (i=1; i<N; i++) {
b[i] += a[i-1];
ali] += c[i];

) Use soffware pipelining!
C i—1 | i+1 i—1 | i+1
a i—1 [i+1 i—1 | i+1
b i—1 [i+1 i—1 [i+1

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

43

Removing dependencies 3

 How to remove this dependency?¢

/‘For' (i=1; i<N; i++) {\/ \

b[i] += a[i-1]; b[1] += a[e@];
a[i] += c[i]; for (i=1; i<N-1; i++) {
} a[i] += c[1i];
o) b[i+1] += a[i];
}
a[N] += c[N];

(U /

Sep 30, 2016 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17 44

Removing dependencies 4

The END

Sep 30, 2016

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2016-17

46

